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Dynamic conductivity for a disordered 2~ electron 
system in a strong magnetic field 

W Apeli  
Max-Planck-Institut fur Festkorperforschung, Heisenbergstrasse 1,7000 Stuttgart 80. 
Federal Republic of Germany 

Received 2 March 1989 

Abstract. The diagonal part of the frequency-dependent conductivity tensor for the lowest 
Landau level of a disordered two-dimensional electron system is calculated with avariational 
method. This becomes rigorous, if the Fermi energy E is deep in the tails of the density of 
states, i.e. in two cases: for fixed E in the regime of weak disorder; and in the hydrodynamic 
limit I E ~  -+ =. In both cases, the non-linear variational equations are solved and the resulting 
frequency dependence of the conductivity is thus analytically determined. As the frequency 
approaches zero in the hydrodynamic limit, the conductivity vanishes. 

1. Introduction 

In the physics of disordered systems, the problem of localisation of electronic states 
under the influence of a magnetic field has attracted a lot of interest in the last years due 
to the discovery of the quantum Hall effect (QHE) (see e.g. Ando 1985). Concerning the 
transport properties of such disordered systems in two dimensions, most of the work 
focuses on the DC conductivity (one of the few exceptions is the application of percolation 
theory by Joynt 1985). However, for two reasons it would be desirable to determine the 
AC conductivity at low frequencies o. Theoretically, the properties of the localised 
quantum states determine how the parallel conductivity approaches zero as o is lowered 
(at zero temperature). Thus a knowledge of this behaviour contributes to our picture of 
localisation at finite magnetic field B and allows us to check the naive invocation of 
the B = 0 localisation theory in a heuristic explanation of the vanishing DC parallel 
conductivity in the QHE regime. Secondly, given the precision of the measurement of 
the conductivity tensor U in the quantum Hall effect (see e.g. Yoshihiro et a1 1985), it is 
important to investigate any possible cause (finite U )  for a theoretical deviation from 
the values 

0" = 0 oxy = (e2/2nh) integer 
in the QHE regime. 

To get a result for the conductivity is a severe theoretical problem, since one has to 
go beyond perturbation theory in order to treat the effect of localisation properly. Yet 
there is no rigorous analytic theory for U(+, o), not even for the simplest model of 
electrons moving in a strong magnetic field B and a disorder potential. But, in particular 
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in view of dimension two being critical for localisation, theoretical predictions should 
be calculated from the given model without further approximations. At zero magnetic 
field B = 0, at least the asymptotic behaviour of d" is rigorously known for electrons 
moving in a disorder potential. Houghton et a1 (1980) calculated with an instanton 
method the conductivity d"(cf,  U) for Fermi energies cf + - a, asymptotically deep in 
the region of localisation. They found the same result as Mott many years before, whose 
argument (see Mott and Davis 1979) uses the concept of localised states. 

The purpose of this work is to devise an instanton method for the conductivity of a 
corresponding model including a strong magnetic field. As a first test, such a method 
has recently been applied successfully to the problem of the density of states (Apel 
1987). The result generalises in the asymptotic regime (ci+ - x )  the exact result of 
Wegner (1983) to a general gaussian distribution of the random disorder potential and, 
of course, coincides with it for a white noise distribution. The instanton method used 
here deals directly with the (function-space) integral over the potential, i.e. with the 
disorder average of the physical quantity in question: here the conductivity. There is 
another more frequently used approach which starts out from representing, say, the 
conductivity with an auxiliary function-space integral of replica or supersymmetric type, 
then averages over the disorder potential, and finally treats the resulting non-linear field 
theory. In comparison, the present method avoiding any auxiliary fields is more tractable 
and more transparent since the elementary field is the physical potential. The resulting 
'instanton potential' is the particular potential which yields the main contribution to the 
conductivity in the disorder average. 

In principle, the instanton method is applicable to the full problem including all 
Landau levels. The calculation involves a variation and leads finally to two coupled non- 
linear differential equations which are to be solved numerically. Now, restricting from 
the beginning the Hilbert space of the electronic states to the lowest Landau level (by 
taking the high-field limit) allows an analytical solution of these equations. As a result, 
the leading asymptotic expression for the conductivity can be given analytically as well. 
Thus the high-field limit greatly simplifies the calculations while the interesting non- 
perturbational physics of localisation is still kept in the model. That is the reason why in 
this work the configuration space is restricted to states of the lowest Landau level, and 
thus only the high-field limit B + x is considered. Even in this limit, there is still no exact 
solution of the transport properties of the model for the whole range of the Fermi energy 
and frequency. 

The outline of the paper is as follows. In the next section the instanton method is 
developed and the limits are derived where it becomes rigorous. The instanton equations 
are solved and the expression for d" is given, in the limit of weak disorder and in the 
hydrodynamic limit, in 00 3 and 4 respectively. The results, in particular the limit of zero 
external frequency, are discussed in the conclusion. 

2. Instanton method 

In this section the expression for the conductivity is formulated for a two-dimensional 
system of electrons moving in a strong magnetic field and a disorder potential. The 
instanton equations are then derived. Kubo's formula defines the frequency ( U )  and 
wavevector-dependent conductivity tensor in terms of a current-density current-density 
response function. In this work it is intended to deal only with states of a single (the 
lowest) Landau level. Because the current operator yields non-vanishing matrix 
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elements only between neighbouring Landau levels, one had better use another equiv- 
alent formulation. Fortunately, the longitudinal part of the conductivity tensor can be 
related to the density-density response function via the equation of charge conservation 
(usually called the Einstein relation), and this function is well defined for a single Landau 
level. Thus one gets the following representation of the real part of the w-dependent 
longitudinal conductivity at wavevector zero: 

where e denotes the electronic charge, h is Planck’s constant and f ( ~ )  is the Fermi 
function. q ( ~ ,  U )  is given by the density-density response function 

~ ( E , o )  = q+ lim2x2(w2/q2)/d2rexp[-iq-(r-r’)]K(r,r’;E: 0 w )  

where K is the disorder-averaged two-particle spectral function 
~ ( r ,  r’;  E ,  w )  =((ria(&- w / 2 - ~ ) l r ’ ) ( r ’ l d ( ~ +  w/2 -H)lr))v. (2.3) 
The single-particle Hamiltonian Hcontains the magnetic field and the disorder potential. 
For the reasons given in the introduction, only the states of the lowest Landau level are 
kept here. Thus H i s  taken to be the projection of the complete system onto the lowest 
Landau level 

H = P{d[(l/i)V - A ] *  + V(r)}P 

Ir) = 2 qm(r ) Im)  

(2.4) 
P being the corresponding projector. Correspondingly in equation (2.3), the states are 
restricted: 

m 

where v m ( r )  is the angular momentum basis of the lowest Landau level. The symmetric 
gauge for the vector potential A = & ( y ,  -x) is adopted. All energies and lengths are 
measured in units of the cyclotron energy and the magnetic length respectively. The 
disorder potential V(r) is taken to be a gaussian random potential with (V(r)), = 0 and 

Here only the simplest case of a white noise correlation is considered. The dimensionless 
couplingg measures the strength of the impurity scattering. Its relation to the scattering 
time t in a Born approximation at zero magnetic field is 

Because of the above scaling of the units of energy and length, the cyclotron frequency 
wB appears in equation (2.6); t is independent of B. With the above properties of the 
distribution of V ,  q is a function only of 1 ( E  - 1/2)/g\/g) 1 and 1 o/d/gl (put H = &P + PVP 
in equation (2.3), scale Vwith g g  and use invariance under rotations, magnetic trans- 
lations and V+ - V). Thus w > 0 and 4 - E > 0 is assumed in the following. 

Next the application of the instanton method is shown. Here, as in the treatment of 
the density of states (Ape1 1987), one considers an average of a spectral function 
over the disorder potential V(r), in this case K (equation (2.3)). In terms of exact 
eigenfunctions Qf f  and eigenvalues E ,  of H one has 

(V(r)V(r’)), = 2nga(r - r’) .  (2.5) 

g = 1/2nwB t. (2.6) 

K ( r , r ’ ;  E ,  w )  = /9[q exp[ - (1 /4~~g) /d ’ rV( r )~ ]  a f f ( r ) @ ; ( r ’ )  
f f P  
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The eigenfunctions and eigenvalues still depend on V. The main contribution to this 
function-space integral over V(r)  comes from a specific potential V' which maximises 
the exponential weight and in addition fulfils the restrictions that H = 4P + PVP has 
eigenvalues E ? w/2. The optimum potential V' is called the instanton potential. 
Approximating the integral (2.7) by the value of its integrand at V =  VI yields the 
exponential dependence of a, on w and E .  For the pre-exponential factor, one has to 
include in a second step the gaussian fluctuations around V'. This 'instanton approxi- 
mation' of the integral K becomes asymptotically exact when the fluctuations V - V' are 
small. Equation (2.7) suggests that this happens in the limit g-, 0, the 'limit of weak 
disorder' of Houghton el a1 (1980). Since a, depends only on (1 - &)/vi and w / ~ ,  the 
corrections to al in the limit of weak disorder are expected to be of the order of 
~ / ( 4  - E ) ,  a / w .  There is yet another limit in which the fluctuations around V' 
become small, namely (1 - E )  + (rescale Vby (4 - E ) ) .  This second limit corresponds 
to the 'hydrodynamic limit' of Houghton et a1 (1980). Both limits are identical for the 
density of states, which only depends on the single variable (1 - &)/vi. In the present 
calculation of the conductivity, however, both limits are drastically different, as they are 
in the corresponding work for zcro magnetic field by Houghton et a1 (1980). Only in the 
hydrodynamic limit, where the corrections to the leading term in a, are expected to be 
of the order of a,'&, O / E ,  can the low-frequency behaviour still be determined. 

Having the two limits identified, in which the present instanton method becomes 
asymptotically exact, the equations for the optimum potential V' are now derived. VI is 
determined by a variation of the exponent of equation (2.7) with the (two) restrictions 
that PVP has two fixed eigenvalues, E - 1 - w/2 and E - 1 + w/2. Adopting two 
Lagrange multipliers A, and A,, one gets from varying in the integrand of equation (2.7) 

The two eigenfunctions @'g,' lie in the lowest Landau level and obey the Schrodinger 
equation. Expanding @(r) (and correspondingly @'"(r)) in angular momentum eigen- 
functions of the lowest Landau level 

(1/2ng)V'(r) -A,I@'g(r)I' -A,~@'"(r)12 = 0. (2.8) 

m 

and inserting the instanton potential V' from equation (2.8) in the Schrodinger equation, 
one finds the following two coupled non-linear equations for the coefficients of the wave- 
functions: 

(1 - E + w/2)Q$ + Vkn@ig = 0 

(+ - E - w/2)@k + 2 Vk,@k = 0 
n 

n 

where the potential is in turn determined by the wavefunctions 

I,,,,,, (A,@:* @: +A,@:* a:). Vkn = g/2 
m'n' 

(2. loa) 

(2. lob) 

(2.10c) 

The Lagrange multipliers A, and A, are also found from equation (2.10) by normalising 
the eigenfunctions @'g and @'". The coupling of the non-linear term is 

(2.11) 
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The equations (2.10) solve the question of which potential VI yields the maximum 
contribution to the averaged conductivity (2.7). They have spatially localised solutions 
@'g,''(r) (see below) which are called instantons. Equations (2.10) look like mean-field 
equations of a q4 theory, similar to the corresponding equations of Houghton et al(1980) 
at B = 0. They differ crucially, though, from the latter and thus the solution is different. 
In the case of a strong magnetic field considered here, the kinetic energy is quenched, 
i.e. the same (4) for all states as opposed to p2/2m. The potential energy, in angular 
momentum representation the matrix Vh,, , completely determines the quantum mech- 
anical eigenvalues. In real space it becomes non-local due to the projection P on the 
lowest Landau level (PV'P), in contrast to the case B = 0 where it is a local potential. 
In equation (2.10), the particles described by the wave functions @'g, @Iu have one 
degree of freedom, the angular momentum m = 0 , 1 , 2 .  . . . This reduction to one 
dimension resulting from the restriction to the lowest Landau level (the high-field limit) 
highly simplifies the problem compared to the case B = 0 and allows an exact solution 
of the equations for VI. The fluctuations around VI in the function-space integral, on the 
other hand, are apparently two-dimensional, because the function V(r) to be integrated 
over dependson twovariables. Aswill be shown below, however, only aone-dimensional 
subset of these fluctuations contributes to the resulting expression of the conductivity. 

3. Solution: regime of weak disorder 

In this section the limit of weak disorder g + 0 is discussed. First the solution of equation 
(2.10) is found. Then, the gaussian fluctuations around the solution are calculated and 
the result for the conductivity is given. Corrections to the leading asymptotic behaviour 
are here expected to be of the order of 

The key to the rigorous solution of the non-linear instanton equations is the restriction 
that only lowest Landau level wavefunctions are admitted together with the rotational 
invariance of the averaged system (see the angular momentum selection rule in equation 
(2.11)). Solutions are wavefunctions @Ig."  which contain each only a single angular 
momentum state m = mg, mu (cf the calculations of the density of states: Ape1 1987). 
Inserting now @!j = S m m g ,  and similarly for @$, solves the m dependence in the 
equations (2.10) and leaves two equations for the two Lagrange multipliers A,, A,. Thus 
a set of solutions VI is determined via equation (2.8), with two arbitrary positive integers 
mg and mu. The particular solution with the maximum contribution to the conductivity 
is found from evaluating the exponent in equation (2.7). Because the calculation of a, 
involves a matrix element with the position operator, mg has to be equal to m, k 1 and 
then mg = 0, mu = 1 yield the smallest exponent: the maximum contribution in equation 
(2.7). Finally, the solution for the instanton potential is 

The wavefunctions @lg,u(r) = qo, l(r) are localised around r = 0. VI is a single rotational 
invariant potential well centred at the origin. As r increases, V'(r) decays as exp( -4r2). 
Since the distribution of the disorder potential V(r)  is homogeneous, the application of 
a magnetic translation leads to a family of exact solutions of equations (2. lo), V1(r - ro),  
with the same value of the exponent in equation (2.7) for arbitrary centre roe 

Calculating the fluctuations around V1(r - ro) to gaussian order is a standard pro- 
cedure. Parametrising V = VI + SV, 

- E ) ,  G/u. 

V'(r) = - 8n[w/q0(r)l2 + (4 - E - $ 0 ) l q 1 ( r ) / ~ ] .  (3.1) 

V(r) = v y r  - ro) + 2 uufu(r  - ro) (3.2) 
U 

wheref, is an orthonormal basis with f o  0: 8,V' ,fl 0: a y  VI, and changing variables from 
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the translational modes uo,  u1 tor,, one gets the following expression for the conductivity 
(cf equation (2.7)): 

( s ~ ( E ,  o) = 2n2al2 exp{-(2/g)[(f - E - ~ / 2 ) ~  + w2]} 

x exp{ -(1/4ng) J d2r[6V(r)2 + 26V(r)V'(r)]} 

x id(&- w/2 - EOIVI + SV]) a(& + 4 2 -  E1[VI + SVJ) 

x (1 + O(6V)). (3.3) 

The first factor in the integrand of equation (3.3) is the Jacobean. The integrals over r 
and ro were performed, which leads in the limit q + 0 to the matrix elements 

~ / d 2 r Q , ( r ) q - r Q ~ ( r ) l  = q / d ( l  + O(6V)) (3.4) 

since Qo(r) = Q'g(r) (1 + O(6V)) and correspondingly for Q,. That gives the factor f in 
the integrand of equation (3.3). The last two 6 functions allow only those fluctuations 
6V which yield E - w/2, E + o /2  for E ~ . ~ [ V '  + 6v], the two lowest eigenvalues of 
H = fP + P(V' + 6V)P. Expanding these restrictions up to second-order perturbation 
theory in GVgives the following two conditions (a = 0, l ) :  

0 = E + (a - f ) o  - EJV'] - 1 d 2 r  V:(r)GV(r)V,(r) 

(3.52) 

where the energy denominators are given by E,, = E,, - w 

Em, = f - E + w/2 + d 2 r  V;(r)V'(r)V,(r) 

(3.5b) 

The first three terms in equation (3.51) cancel, since the equations are fulfilled for 6V = 
0. Thus equations (3.5) determine the components of 6V parallel to I V,, l 2  in terms of 
fluctuations GVin second order. Using these two constraints in the second term SVV' of 
the exponent of equation (3.3) (cf equation (3.1)), one sees that all the fluctuations 6V 
are of the order of 6 (all eigenvalues turn out to be positive, cf Appendix Al ) .  The 
above analysis of the variables of oI then shows that the corrections to a gaussian 
approximation in 6V are of the order of g/w2 and g / ( f  - E ) ~ .  Collecting all terms, one 
gets as the main result of this section the following expression for the conductivity valid 
in the regime (1 - E ) ~  %- g, o2 %- g:  

J 
= f - E + w/2 - (1/2,)[2o + (f - E - $o)(m + l)]. 

ul(&, o) = [o(8 - &)/g12 exp{-(2/g)[(/f - & I  - l ~ / 2 1 ) ~  + 021> 

The fluctuation integral D calculated in the Appendix A1 still depends on the ratio of 
the external frequency to the distance of the energy from the band centre. D turns out 
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to be a single product (equation (A1.3)), because only a one-dimensional subset of the 
fluctuations 6V contributes a factor different from unity to D. As already indicated 
above, at this point the problem displays its one-dimensionality in the limit considered 
here. 

4. Solution: hydrodynamic limit 

Here, the hydrodynamic limit E +  - x of o,(E, w )  is discussed. As in the last section, 
first the solution of the instanton equations (2.10) is given in this limit and then the 
gaussian fluctuations around the instanton potential are calculated. The corrections to 
the leading asymptotic behaviour are expected to be of the order of v/g/~, O/E. 

In the hydrodynamic limit the equations (2.10) become degenerate, since 
S2 = (w/2)/(1 - E) goes to zero. Trying to extrapolate the solution of the last section to 
S2 = 0, one finds from the calculation in Appendix A1 that one of the fluctuation 
eigenvalues (m = 2) vanishes and the corresponding integral D2(S2) diverges as Q C 2 .  

The corresponding eigenvector is easily identified. This mode (of the order of d\/g/O) 
could be considered small compared to V' (of the order of 1 - E )  only in the regime of 
weak disorder in the last section. But here, in the hydrodynamic limit, S2 + 0 and it has 
to be kept to all orders. A careful examination of the equations (2.10) now shows that 
the point V' where the integrand in equation (2.7) becomes maximal degenerates to a 
whole surface as 52 + 0. That is the reason for the mode with the vanishing eigenvalue 
mentioned above. The degenerate solutions on this surface are made up from two 
functions, namely the spherical symmetric eigenfunction @; of the last section, shifted 
with magnetic translations by 5 and - 5.  Surprisingly, their symmetric and antisymmetric 
superpositions solve equations (2. lo), in spite of their non-linearity. Indeed one verifies 
that 

[m! 2" cosh $iE12]-1~2E*m m even 

m odd 

0 m even 

[m! 2" sinh 11f12]-1/2E*m m odd 

(4. la) 

(4. l b )  

solves equations (2.10) at 51 = 0 with A, = 0, A, = - (h - ~ ) 4 / g  rigorously for all values 
of the complex variable E which parametrises the surface of maxima. In real space, 

(4. IC) 

with f = cosh andf = sinh respectively (and z = x + iy). The corresponding potential 

l s inh(6*~/2) /~  
2n  sinh 4 / & 1 2  VI@, f )  = - (1 - E)8n exp( - r2/2) 

yields an exponent of (2/g)(1 - E)* in equation (2.7) independent of E .  Figure 1 shows 
V'(r, E )  for fixed E = 2.5i. It is an inversion symmetric double-well potential. For large 
151, twice the modulus of E gives the distance between the wells and its phase gives the 
direction from the origin to one of the minima, As f decreases, the two minima flatten 
and merge and the potential well goes over in the rotational symmetric solution of the 
last section at S2 = 0 (equation (3,l)) .  Linear expansion in E gives again the above 
mentioned eigenvector of the zero mode. Comparing with the work at B = 0, the 
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Figure 1. Plot of the instanton potential Vi(r, E )  
(equation (4.2)) in arbitrary units over the x ,  y 
plane for E = 2 . 5 .  

corresponding potential there looks similar and is approximately given by a super- 
position of two B = 0 single-well instanton potentials separated by a distance a. It should 
be stressed, however, that in spite of this apparent similarity the quantum mechanics in 
both cases is quite different, as already explained at the end of 8 2. The case of strong 
magnetic field considered here shows the simplifying feature that an analytical expression 
for the double well instanton potential can be rigorously derived, thanks to the restriction 
to the lowest Landau level. If we now increase 52 from zero to a finite value, the 
degeneracy described by the 5 coordinate is lifted as will be seen below, and only double 
well potentials with smaller and smaller distance can still contribute to the conductivity. 
But because the limit 52 + 0 is to be studied in this section, it is necessary to keep the 
full non-linearity of the 5 coordinate. Therefore the result of the last section cannot 
simply be taken over to the hydrodynamic limit. 

Now the gaussian fluctuations around V1(r, 5) are to be calculated for fixed finite 5. 
In the parametrisation V = V' + 6Vfour collective coordinates have to be singled out: 
an arbitrary translation (ro) and 5;  

Here the orthonormal basisf, contains the translational modesfo andf,, and the modes 
related to the collective coordinate 5, 

where 5 = 151 exp(iq). After eliminating uo . . . u3 in favour of ro and 5,  the expression 
for the conductivity becomes (cf equation (2.7)) 

3 

O, (E ,  = 2rc2w2 lom d 151 l W V 1  rI 6 ( u , )  
v = o  

x ~ ( i l g l ~ ,  S V )  exp[-E(il5I2, SV)] C(4l5l2, Sv> 
x 6( E - w/2 - E o  [ VI + Svl)  6( E + w/2 - E 1  [ v' + SV]). (4.4) 

Here the Jacobean J ,  the exponent E and the eigenvalues E ~ ,  do not depend on the 
position ro and orientation I) of the instanton solution VI. Thus integrating over ro and 
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leads to the following expression for C, the square of the matrix element of the position 
operator: 

where g2 = 1. Next the expressions for J ,  C and E are given in leading order in the 
expansion with respect to 6V. Since VI is proportional to (4 - E ) ,  that is an expansion in 
(3 - E )  -'. For J ,  the leading order is already given at 6V = 0: 

J(x, 0) = 16n2(t - E ) ~  %% (cosh x sinh x -x)/sinh2 x.  (4.6) 
For C, one needs the wavefunctions of the next, first order degenerate ( E ~ , ~ [ V I ]  = E ) ,  

perturbation theory. In this order the fluctuations 

(4.7) 

contribute. In equation (4.71, :he arguments ( r ,  5) are suppressed fnr brevity. The 
functions f o  . . . f, are mutually orthogonal. The energy eigenvalues are to first order 

U ;  
& @ , I  = E + v i  + - 

2 cosh 

1 I / ? .  1+tanh  1 - tanh 
v i2  + ~ v ; ~ )  ] + 0 (G) (4.8) 2 cosh 2 

with U :  = ~ , / (8n ) ' /~ .  The hyperbolic functions have the argument 41E12. They arise 
from normalisations and inner products of different products of @'g,'(r, E ) .  The two last 
6 functions in equation (4.4) constrain the fluctuations 6V to those which yield the 
eigenvalues E 7 w/2. Thus v j, 0 6  and v7 are constrained to be on an ellipsoid and v 4  is 
given by v5. Introducing spherical coordinates 

U ;  = 2 cosh x cos e 

and expa 

2 112 

U sin e cos q " = (1 + tanhx) 
2 112 

U sin 8 sin ip " = (1 - tanhx) 

ding the wavefunctions (in first-order 

(4.9) 

erturbation theory) in @[g." 

(equation (4.1c)), one gets from equation (4.5) after some algebra 

(4.10) 

For E +  a, C increases as x E 1EI2, consistent with the meaning of 2151 as the distance 
between the two minima of VI. For E ,  one needs to go one order beyond equation (4.8) 
in the perturbational calculation of the eigenvalues, since the exponent 

E(11512, 6V)  = (2/g)(3- E - V i ) 2  + (4ng)-' U :  (4.11) 

f4 )  contains the term (3 - E )  v4  and thus the order (4 - E ) - '  in the constraint 
u i 4  

(use VI 



9396 W Ape1 

for u 4  (and u s )  has to be determined. The resulting correction to E is quadratic in the 
fluctuations 6V (just as in the limit of small disorder in the last section, cf equation 
(3.5)). Thus, all fluctuations 6Vexcept u4,  u 5 ,  0 6  and U - /  are quadratic. If we integrate 
the latter modes separately with the parametrisation (4.9), cos 8 = U, the last two 6 
functions in equation (4.4) determine u 4  and U (=w/2). Collecting all factors, one gets 
finally as the main result of this section the following expression for the conductivity 
valid in the regime (4 - E ) ~  9 g,  (B - E ) ~  9 w 2 :  

(TI(&, U )  = [w( i  

X 

X 

X 

X 

with 

- &)/gI4 1% d x l '  d u  1 j7 - d" 
2n  

0 -1 -n 

coth2 x (cosh x sinh x - x )  

exp{( -2/g)[(i - E + i w ~ ) ~  + w2E(x,  U, ")I> 
~ [ ( l  + u2)  coth 2x - (1 - u2) COS 2 q ]  

[1 + O( lW/&I ,  g/E2)1 

E ( x ,  U, q) = u2 cosh2 x + - 

(4.12) 

(4.13) 

Here, E(x, U, q) in the exponent and the factor Dh(x)  result from the fluctuation integral 
which is evaluated in Appendix A2. 

5.  Conclusions 

The longitudinal conductivity U,(&, w )  was considered for a system of electrons moving 
in a disorder potential and a magnetic field which was assumed to be strong enough so 
that only states of the lowest Landau level are populated. Exact asymptotic expressions 
for u, in the limit (a - E ) ~  9 g were derived in two different regimes (the electronic energy 
E (and also frequency U )  are measured in units of the cyclotron energy (frequency); g 
is proportional to the inverse scattering time (equation (2.6)). For w 2  9 g, the limit of 
weakdisorder, the result for qisgiven byequation (3.6). In the asymptoticregionstudied 
here, it becomes-as the density of states-exponentially small. The low-frequency 
behaviour of the conductivity can be studied in the other regime, the hydrodynamic 
limit, (B - + w2,  where the result for 4 is given byequation (4.12). Now, the integrals 
in equation (4.12) are evaluated to get the leading term for g 9 oz. The second term of 
the exponent in equation (4.12) renders the x iitegral convergent by cutting it off at 
x ,  - In g / w 2  (E(x ,  U, q) diverges for x--, a). Thus the leading term comes from the 
regionx 9 1. Double-well potentials VI with a separation between the wells smaller than 
(8x,)lI2 contribute to equation (4.12). In evaluating the U integral one has to distinguish 
between two different cases because of the first term in the exponent of equation (4.12). 
Consider first (l/g)Ii - E /  (0) 9 1. Then the main contribution to the U integral in 
equation (4.12) comes from the region U = - 1. Thus one gets the following result for 
the conductivity in the regime g + w 2  9 g2/(B - E ) ~ :  

Ul(E, w )  cc 2(lwl li - &13/g2) ln(g/w2) exp[( -2/g)(li - El - Iw/21)21. 
(5.1) 

o ] ( E ,  U )  8[02(4- ~ ) ~ / g ~ ]  In(g/w2) exp[( -2/g)(l- E ) * ] .  (5.2) 

In the second case, on the other hand, i.e. where g 9 g2/(B - E)' 9 w 2 ,  the whole range 
of the U integral contributes and one has a cross-over from equation (5.1) to 

As in the limit of weak disorder, the conductivity becomes exponentially small in 
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the asymptotic region. The low-frequency behaviour of 0, leading to a vanishing DC 
conductivity is interpreted as the result of the localisation of the quantum electronic 
states. It is instructive to compare the frequency dependence in equations (5.1) and (5.2) 
with the corresponding result for B = 0: 

U, o2 [In 1/ozId+'  d = 2. 

In the strong-field case, the behaviour of oI is dominated by a linear frequency depen- 
dence, equation (5.1); only for an interval of o which shrinks to zero in the limit 
(4 - E )  + = studied here does u1 cross over to the quadratic law. The power of the 
logarithmic correction is 1 instead of 3 as for B = 0, due to the different decay of the 
localised states as r-+ E. The scale on which o varies is ( ~ ~ / t ) ' / ~  instead of 1/t (in 
ordinary units). The comparison shows that the conductivity behaves quite differently 
for a disordered system at B = 0 and in the strong-field limit respectively. In a recent 
preprint, Efetov and Marikhin (1989) study the case of a large Landau level index n 
(n  += m), opposite to the limit (n  = 0) in the present work. They find for the conductivity 
the same frequency dependence with the same power of the logarithmic correction as at 
B = 0. 
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Appendix A1 

Here the fluctuation integral D in the regime of weak disorder is calculated. Choosing 
the functions f 2 ,  f3  in the expansion (3.2) orthonormal in {lqOl2, 1qIl2} one finds, 
comparing equation (3.6) with equation (3.3), 

D(R)  = (8n/16)(1 - E ) - ~  (1 d 2  rfoa,V') 
2 

(Al.1) 

with R = (0.1/2)/(1 - E ) .  The quadratic form in the exponent results from using the 
constraint (3.5) in the term SVV' in the exponent of equation (3.3) and scaling 6V by 

(6VM6V) = 1 d 2 r  6V(r)2 - 16n 

d(4ng): 

(A1.2) 

The angular momentum eigenfunctions of the lowest Landau level vm(r) have the 
angular dependence ( x  + iy)". Because any fluctuations 6Vorthogonal to the functions 

vm and V :  qm+l (m = 0 , 1 , 2 .  . . )  only enter the first term in (6VM6V) cor- 
responding to M = 1, they cancel in the integral (Al .  1) against the normalisation of the 



9398 W Ape1 

disorder average. One is then left with only the above one-dimensional subset of 
fluctuations. These are easily evaluated, because any linear combinations of the two 
functions above are orthogonal for different m. The 6 functions in the integrand in 
equation (Al .  1) only restrict the fluctuations for m = 1 and m = 0, because fo. belong 
tom = 1, and f2.3 are rotational invariant, m = 0. Equation (A1.2) displays nicely how 
the restriction of the configuration space to the lowest Landau level leads to the result 
that only a one-dimensional subset of fluctuations 6V contributes to the conductivity in 
the limit considered here. All fluctuations are stable and D is given by the product of the 
contributions from different m = 0, 1 , 2 , 3  . . . : 

E 

D(52) = ((1 + 52)(l+ 9Q)/6Q) n Dm(52) 
m=3 

with 

(A1.3) 

and 

The product in equation (A1.3) is a monotonic function of 52 which decreases from its 
maximum (= 3.16) at Q = 0 with increasing 52. 

x m ( Q )  = 2w/2"Emo y m ( Q )  = ( i - & - ~ w ) ( m + 2 ) / 2 " + ' E m + , , .  

Appendix A2 

Here, the fluctuation integral in the hydrodynamic limit is examined. To this end, one 
needs the eigenvalues and eigenfunctions of linear fluctuations around V'(r, E )  (equation 
(4.2)). Since V' = - (i - 

d2r 'P(r ,  rr)8n1@'"(r', E)I2xk(r', E> = mk(hlEi2)xk(r, E ) .  (A2.1) 

Equation (A2.1) is an integral equation, non-local due to P(r ,  r ' ) ,  the projector in the 
lowest Landau level. Two eigenfunctions and eigenvalues are already known, namely 
xo = (P'g andx, = @Iu, which solve the instanton equations (2.10); mo = ml  = 1. Due to 
rotation invariance, the mkdepend only on the modulus of 6. For E = 0, when V'becomes 
rotational symmetric, the eigenvalues can be classified according to the angular momen- 
tum k ,  mk(0) = ( k  + 1) 2-k ( k  = 0 , 1 , 2 .  . .). For E - .  CO, each eigenvalue becomes dou- 
bly degenerate, m 2 , ( ~ )  = my+l(=) = 2-1, j = 0 , l  . . . . These are the energy levels in two 
identical wells infinitely far separated as E +  =. In general, mk(x) 0. Also, 1 3 mk(x), 
as the numerical diagonalisation of equation (A2.1) in the angular momentum rep- 
resentation shows. In the following, it becomes necessary to use the functions 

(A2.2) 
Multiplication of equation (A2.1) withx; and integration shows that y k  are orthonormal; 
normalisation of the xk is assumed. 

Now the expression for the fluctuation integral D is derived. Following the steps 
leading to equation (4.12) one needs to calculate (GVis scaled by ( 4 ~ g ) " ~ ) :  

D(x,  A i ,  Ai ,  A:) = 4n4 9[6V] n 6 ( u ,  -A,>exp[-(SVMGV)] 

consider the eigenvalue equation 

y k ( r ,  5)  = (8n/mk)lI2 @ I u *  ( r , E )  X k k 7  E ) .  

7 

(A2.3) i v = o  

with A. = A I  = A2 = A3 = A 4  = 0 and 
a 2 (6VM6V)=/d2r6V(r)'- ~ - ~ / d 2 r @ ' u " 6 v * ,  28n 1 . 

k = * l -  mk 
(A2.4) 

The normalisation in equation (A2.3) is such that 
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Here, the inner product in the exponent is defined as usual and corresponds to the first 
term on the RHS of equation (A2.4). The second term in equation (A2.4) comes from 
the second-order perturbation theory in the constraint of v4. In inner product notation, 
equation (A2.4) becomes 

(A2.5) 

Similar to before, all fluctuations GVorthogonal to the yk and tofu with v = 0 , l  . . . 6 , 7  
yield a factor of 1 in D .  Even and odd fluctuations in r do not mix in equation (A2.5) 
since the parity is conserved in equation (A2.1). Thus D = D,D,. Consider first the 
fluctuations in the space of even functions, (f2, f3, f4, f 5 ,  y2k+l for k = 1 , 2  . . .}. It is easy 
to show that (f4y2k+l) = (f5y2k+*) = 0 for k = 1 , 2 .  . . . Moreover, one finds 
y3 = l / f i  ( f 2  + if3) with m3(11EI2) = 1 and thus the f2 ,3  become zero modes in equation 
(A2.5). Finally, since GVis real andy2k+l is complex, one needs mutual orthonormality 
of the real and of the imaginary parts ofy2k+l for different k to separate the modes. That 
can be proved and one gets 

CO 

Dg(x, A?)  = exp(-A:>4 [ 1 - m 2 k + l ( X ) 1 / [ 1 - 2 m 2 k + l ( X ) 1 .  (A2.6) 
k = 2  

Next, the fluctuation integral D, is considered, which comes from the odd parity fluc- 
tuations (fo, f l ,  f6, f,, y2k for k = 1 , 2 .  . . }. Unfortunately, here the real and imaginary 
parts of y2k are not mutually orthogonal. Writing Y 2 k  = ( 1 / f i ) ( &  + i &) for k = 
1 , 2 , .  . . , one  finds 

(A2.7) 

where ak(X) = (m2k(x) sinh x)-''~( qjgX2k) describes the non-orthogonality; x denotes 
11EI2. Fluctuations parallel to Rk still do not mix with those parallel to I k '  ((Zk'Rk) = 0); 
thus D ,  = DuR(x ,  A;)D,&, A:). The calculation of DuR,[ is straightforward but com- 
plicated by the non-orthogonality (A2.7). From equation (A2.3) it is obvious that 

(A2.8) 

The rather lengthy analytical results for the E and D, in terms of norms and the product 
of a&) and another similarly defined vector bk(x) are omitted here for the sake of 
brevity. For an evaluation of these as a function of x = 11E12, the eigenvalues mk(x) and 
also the eigenfunctions X2k of equation (A2.1) in the angular momentum representation 
were calculated numerically. 

D u R , I ( X ,  A2)  = exp(-A2ER,I(X)) D u R . I ( X ) .  

In summary the following result was found: 
l-mk(x) - 

D(x ,  A:, A;, A:) = exp[-A: - A i  ER(X)  - A:E,(X)]4 D(x) .  (A2.9) 
k = 4  1 - 2mk(x) 

The numerical investigation shows that the ER, 1 ( ~ )  vary monotonically between 
1 5 ~ , ~ ( 0 )  = - 1 and ER,,(m) = + 1. The product varies between 3.16 at x = 0 and 4 a tx  = 
m. D(x)  is of the order of 1, d(0) = D ( m )  = 1. 

References 

Ando T 1985 Prog. Theor. Phys. Suppl. 84 69 
Ape1 W 1987 J .  Phys. C: Solid State Phys. 20 L577 



9400 W Ape1 

Efetov K B and Marikhin V G 1989 preprint 
Houghton A, Schafer L and Wegner F J 1980 Phys. Reu. B 22 3598 
Joynt R 1985 J .  Phys. C: Solid State Phys. 18 L331 
Mott N F and Davis E A 1979 Electronic Processes in Non-Crystalline Materials 2nd edn (Oxford: OUP) 0 2.5 
Wegner F 1983 Z. Phys. B 51 279 
Yoshihiro K ,  Kinoshita J ,  Inagaki K, Yamanouchi C, Wakabayashi J and Kawaji S 1985 Prog. Theor. Phys. 

Suppl. 84 215 


